Quadrant II
Quadrant IV
Quadrant I
X-axis (left)
Quadrant III
Y-axis (up)
2 units
9 units
5 units
8 units
5 units
7 units
4 units
6 units
D (–3, –1)
S(–3, –1)
(1, 12) and (1, –2)
(–7, 3) and (5, 3)
4
10
6
9
15
6
–3
3
1
[latex] \displaystyle{\frac{3}{2}} [/latex]
6
–6
[latex] 5x - 2y = -2 [/latex]
[latex] 3x + 4y = -12 [/latex]
[latex] x - 2y = -3 [/latex]
[latex] \displaystyle{y = -\frac{3}{2}x - \frac{3}{4}} [/latex]
[latex] \displaystyle{y = \frac{3}{2}x + 5} [/latex]
[latex] \displaystyle{y = -\frac{3}{2}x + 3} [/latex]
[latex] y = x + 3 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 3 [/latex] | [latex] (0, 3) [/latex] |
[latex] 1 [/latex] | [latex] 4 [/latex] | [latex] (1, 4) [/latex] |
[latex] 2 [/latex] | [latex] 5 [/latex] | [latex] (2, 5) [/latex] |
[latex] 3 [/latex] | [latex] 6 [/latex] | [latex] (3, 6) [/latex] |
[latex] y = -5x + 1 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 1 [/latex] | [latex] (0, 1) [/latex] |
[latex] 1 [/latex] | [latex] -4 [/latex] | [latex] (1, -4) [/latex] |
[latex] 2 [/latex] | [latex] -9 [/latex] | [latex] (2, -9) [/latex] |
[latex] 3 [/latex] | [latex] -14 [/latex] | [latex] (3, -14) [/latex] |
[latex] 2x + y + 1 = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -1 [/latex] | [latex] (0, -1) [/latex] |
[latex] 1 [/latex] | [latex] -3 [/latex] | [latex] (1, -3) [/latex] |
[latex] 2 [/latex] | [latex] -5 [/latex] | [latex] (2, -5) [/latex] |
[latex] 3 [/latex] | [latex] -7 [/latex] | [latex] (3, -7) [/latex] |
[latex] 2x - y - 3 = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -3 [/latex] | [latex] (0, -3) [/latex] |
[latex] 1 [/latex] | [latex] -1 [/latex] | [latex] (1, -1) [/latex] |
[latex] 2 [/latex] | [latex] 1 [/latex] | [latex] (2, 1) [/latex] |
[latex] 3 [/latex] | [latex] 3 [/latex] | [latex] (3, 3) [/latex] |
x-intercept: [latex] \displaystyle{(-\frac{2}{3}, 0)} [/latex]; y-intercept: [latex] \displaystyle{(0, -2)} [/latex]
x-intercept: [latex] 7, 0 [/latex]; y-intercept: [latex] 0, 7 [/latex]
x-intercept: [latex] -2, 0 [/latex]; y-intercept: [latex] 0, 4 [/latex]
[latex] \displaystyle{m = \frac{2}{3}; b = -6} [/latex]
[latex] \displaystyle{m = \frac{4}{7}; b = 3} [/latex]
Positive slope
0
[latex] \displaystyle{-\frac{5}{8}} [/latex]
[latex] y = 2 [/latex]
[latex] y = x - 2 [/latex]
[latex] y = -2x + 10 [/latex]
[latex] \displaystyle{y = \frac{2}{3}x} [/latex]
[latex] \displaystyle{y = -\frac{3}{2}x + 6} [/latex]
2
7
[latex] 5x + 3y = 15 [/latex]
[latex] 2x + y = 1 [/latex]
Perpendicular
Parallel
Perpendicular
Neither
[latex] \displaystyle{y = \frac{2}{3}x - \frac{13}{3}} [/latex]
[latex] \displaystyle{y = \frac{1}{3}x - 20} [/latex]
[latex] y = x + 7 [/latex]
[latex] \displaystyle{y = -\frac{1}{2}x + 1} [/latex]
Quadrant IV
Quadrant II
X-axis (right)
Quadrant IV
X-axis (right)
Y-axis (up)
Rectangle
Perimeter = 22 units; Area=24 square units
[latex] 4x - y = 2 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -2 [/latex] | [latex] (0, -2) [/latex] |
[latex] 1 [/latex] | [latex] 2 [/latex] | [latex] (1, 2) [/latex] |
[latex] 2 [/latex] | [latex] 6 [/latex] | [latex] (2, 6) [/latex] |
[latex] 3 [/latex] | [latex] 10 [/latex] | [latex] (3, 10) [/latex] |
[latex] x + y - 4 = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 4 [/latex] | [latex] (0, 4) [/latex] |
[latex] 1 [/latex] | [latex] 3 [/latex] | [latex] (1, 3) [/latex] |
[latex] 2 [/latex] | [latex] 2 [/latex] | [latex] (2, 2) [/latex] |
[latex] 3 [/latex] | [latex] 1 [/latex] | [latex] (3, 1) [/latex] |
[latex] \displaystyle{y = \frac{1}{2}x + 2} [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 2 [/latex] | [latex] (0, 2) [/latex] |
[latex] 2 [/latex] | [latex] 3 [/latex] | [latex] (2, 3) [/latex] |
[latex] 4 [/latex] | [latex] 4 [/latex] | [latex] (4, 4) [/latex] |
[latex] 6 [/latex] | [latex] 5 [/latex] | [latex] (6, 5) [/latex] |
[latex] 3x - 4y = 12 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -3 [/latex] | [latex] (0, -3) [/latex] |
[latex] 4 [/latex] | [latex] 0 [/latex] | [latex] (4, 0) [/latex] |
[latex] 8 [/latex] | [latex] 3 [/latex] | [latex] (8, 3) [/latex] |
[latex] x - 2y - 6 = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -3 [/latex] | [latex] (0, -3) [/latex] |
[latex] 6 [/latex] | [latex] 0 [/latex] | [latex] (6, 0) [/latex] |
[latex] 2 [/latex] | [latex] -2 [/latex] | [latex] (2, -2) [/latex] |
[latex] x - 2y - 6 = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -3 [/latex] | [latex] (0, -3) [/latex] |
[latex] 6 [/latex] | [latex] 0 [/latex] | [latex] (6, 0) [/latex] |
[latex] 2 [/latex] | [latex] -2 [/latex] | [latex] (2, -2) [/latex] |
[latex] y = 4x [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 0 [/latex] | [latex] (0, 0) [/latex] |
[latex] 1 [/latex] | [latex] 4 [/latex] | [latex] (1, 4) [/latex] |
[latex] m = 4; b = 6 [/latex]
[latex] \displaystyle{m = -\frac{3}{2}; b = 6} [/latex]
[latex] \displaystyle{m = -\frac{3}{4}; b = -1} [/latex]
[latex] \displaystyle{y = \frac{3}{4}x - \frac{1}{4}} [/latex]
[latex] \displaystyle{y = -\frac{4}{3}x + \frac{8}{3}} [/latex]
[latex] y = 3x - 5 [/latex]
[latex] \displaystyle{y = \frac{3}{4}x + \frac{9}{2}} [/latex]
[latex] y = -2x + 1 [/latex]
[latex] (2, -5) [/latex]
[latex] (6, 2) [/latex]
[latex] (2, 1) [/latex]
Company A: [latex] y = 40x + 250 [/latex];
Company B: [latex] y = 50x + 200 [/latex]
[latex] (5, 450) [/latex]; both companies charge a total fee of $450 for 5 hours of labour
Paul should hire Company A if the labour will take more than 5 hours
One solution
No solution
Infinitely many solutions
[latex] (4, 1) [/latex]
[latex] \displaystyle{(\frac{52}{19}, -\frac{70}{19})} [/latex]
[latex] (1, 1) [/latex]
[latex] (2, 1) [/latex]
[latex] (-4, -2) [/latex]
[latex] (3, 0) [/latex]
[latex] (3, 4) [/latex]
[latex] (15, 20) [/latex]
[latex] \displaystyle{(\frac{29}{7}, -\frac{13}{7})} [/latex]
65 and 30
210 adults, 90 kids
24 L; 36 L
2.29 km/h
2.5 hours
[latex] (-3, -1) [/latex]; Area = 40 square units
[latex] 2x - 3y = 6 [/latex]
[latex] \displaystyle{x = \frac{25}{8}} [/latex]
[latex] \displaystyle{y = \frac{2}{3}x = 2} [/latex]
[latex] \displaystyle{y = -\frac{3}{4}x + \frac{5}{4}} [/latex]
[latex] 2x - 3y = 9 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] -3 [/latex] | [latex] (0, -3) [/latex] |
[latex] 3 [/latex] | [latex] -1 [/latex] | [latex] (3, -1) [/latex] |
[latex] 6 [/latex] | [latex] 1 [/latex] | [latex] (6, 1) [/latex] |
[latex] 9 [/latex] | [latex] 3 [/latex] | [latex] (9, 3) [/latex] |
[latex] 3y + 4x = 0 [/latex] | ||
[latex] x [/latex] | [latex] y [/latex] | [latex] (x, y) [/latex] |
[latex] 0 [/latex] | [latex] 0 [/latex] | [latex] (0, 0) [/latex] |
[latex] 3 [/latex] | [latex] -4 [/latex] | [latex] (3, -4) [/latex] |
[latex] 6 [/latex] | [latex] 1 [/latex] | [latex] (6, 1) [/latex] |
[latex] 4x + 5y = 9 [/latex]
[latex] 3x - 5y = 15 [/latex]
[latex] 3x - 2y = -12 [/latex]
[latex] \displaystyle{\frac{4}{3}x - y = 0} [/latex]
Infinitely many solutions
Club A: [latex] y = 20x + 180 [/latex];
Club B: [latex] y = 30x [/latex]
[latex] (18, 540) [/latex]; both clubs charge a fee of $540 for 18 hours of court time
Sandra should join club A if she is planning to play more than 18 hours
One solution
No solution
No solution
[latex] \displaystyle{(\frac{15}{7}, -\frac{18}{7})} [/latex]
[latex] \displaystyle{(-\frac{3}{2}, -\frac{3}{2})} [/latex]
35 and 30
75 quarters
325 adult tickets
5 lb; 10 lb
4.5 km/h; 1.5 km/h