3.1 Exponents and Properties (Rules) of Exponents

In Chapters 1 and 2, we learned about powers of whole numbers, fractions, and decimal numbers.

Recall that when a number is raised to a whole number exponent, we can think of it as repeated multiplication. Powers are a simpler way to indicate repeated multiplication, similar to how multiplication is a simpler way to indicate repeated addition. Powers are expressed using exponential notation.

For example, the whole number 2 multiplied by itself 5 times is written in exponential notation as:

base [latex] \longrightarrow2^{5\longleftarrow} [/latex] exponent

2 is the base, 5 is the exponent, and the whole representation 25 is known as the power.

Exponential Notation

Similarly, the fraction [latex] \displaystyle{\frac{3}{4}} [/latex] multiplied by itself 4 times is written in exponential notation as:

base [latex] \longrightarrow\displaystyle{\left(\frac{3}{4}\right)}^{4\nwarrow} [/latex] exponent

[latex] \displaystyle{\frac{3}{4}} [/latex] is the base, 4 is the exponent, and the whole representation [latex] \displaystyle{\left(\frac{3}{4}\right)}^4 [/latex] is the power.

Exponential Notation 2

Similarly, the decimal number 1.2 multiplied by itself 3 times is written in exponential notation as:

base [latex] \longrightarrow(1.2)^{3\longleftarrow} [/latex] exponent

1.2 is the base, 3 is the exponent, and the whole representation [latex] (1.2)^3 [/latex] is the power.

Exponential Notation 3

Properties (Rules) of Exponents

The following properties of exponents, known as the rules or laws of exponents, are used to simplify expressions that involve exponents.

Product of Powers (Product Rule)

To multiply powers with the same base, add their exponents.

For example,

[latex] 7^5 \times 7^3 = (7 \times 7 \times 7 \times 7 \times 7) \times (7 \times 7 \times 7) [/latex]

[latex] = (7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7) [/latex]

[latex] = 7^8[/latex], which is the same as [latex] = 7^{(5 + 3)}[/latex]

You will note that the resulting exponent, 8, can be obtained by adding the exponents 5 and 3 since the powers have the same base.

In general, for powers with base ‘a’ and exponents ‘m’ and ‘n’,

[latex] \boldsymbol{a^m \times a^n = a^{(m + n)}} [/latex]

Note: [latex] a^m + a^n \neq a^{(m + n)} [/latex]


Example 3.1-a: Simplifying Exponential Expressions Using the Product Rule

Express the following as a single power:

  1. [latex] 2^3 \times 2^4 \times 2^2 [/latex]


  2. [latex] \displaystyle{\left(\frac{3}{5}\right)^6 \times \left(\frac{3}{5}\right)^2} [/latex]


  3. [latex] (0.2)^3 \times (0.2)^2 [/latex]


Solution

  1. [latex] 2^3 \times 2^4 \times 2^2 = 2^{(3 + 4 + 2)} = 2^9 [/latex]


  2. [latex] \displaystyle{\left(\frac{3}{5}\right)^6 \times \left(\frac{3}{5}\right)^2 = \left(\frac{3}{5}\right)^{(6 + 2)} = \left(\frac{3}{5}\right)^8} [/latex]


  3. [latex] (0.2)^3 \times (0.2)^2 = (0.2)^{3 + 2} = (0.2)^5 [/latex]


Quotient of Powers (Quotient Rule)

To divide two powers with the same base, subtract their exponents.

For example,

[latex] 4^7 \div 4^2 = \displaystyle{\frac{4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4}{4 \times 4}} [/latex]

[latex] = \displaystyle{\frac{4 \times 4}{4 \times 4} \times 4 \times 4 \times 4 \times 4 \times 4} [/latex]

[latex] = 1 \times 4 \times 4 \times 4 \times 4 \times 4 [/latex]

[latex] = 4^5[/latex], which is the same as [latex] = 4^{(7 - 2)} [/latex]

You will note that the resulting exponent, 5, can be obtained by subtracting the exponent of the denominator from the exponent of the numerator (7 − 2 = 5) since the powers have the same base.

In general, for powers with a non-zero base ‘a’ and exponents ‘m’ and ‘n’,

[latex] \boldsymbol{\displaystyle{\frac{a^m}{a^n} = a^{(m - n)}}}[/latex], where [latex] \boldsymbol{a \neq 0} [/latex]

Note: [latex] a^m - a^n \neq a^{(m - n)} [/latex]


Example 3.1-b: Simplifying Exponential Expressions Using the Quotient Rule

Express the following as a single power:

  1. [latex] 3^9 \div 3^5 [/latex]


  2. [latex] \displaystyle{\left(\frac{2}{3}\right)^6 \div \left(\frac{2}{3}\right)^4} [/latex]


  3. [latex] (1.15)^5 \div (1.15)^2 [/latex]


Solution

  1. [latex] 3^9 \div 3^5 = 3^{(9 - 5)} = 3^4 [/latex]


  2. [latex] \displaystyle{\left(\frac{2}{3}\right)^6 \div \left(\frac{2}{3}\right)^4 = \left(\frac{2}{3}\right)^{6 - 4} =\left(\frac{2}{3}\right)^2} [/latex]


  3. [latex] (1.15)^5 \div (1.15)^2 = (1.15)^{(5 - 2)} = (1.15)^3 [/latex]


Power of a Product (Power of a Product Rule)

To determine the power of a product, each factor of the product is raised to the indicated power.

For example,

[latex] (3 \times 5)^4 = (3 \times 5)(3 \times 5)(3 \times 5)(3 \times 5) [/latex]

[latex] = 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 5 [/latex]

[latex] = 3^4 \times 5^4 [/latex]

You will note from the result that each factor of the product is raised to the power of 4.

In general, for any product of factors ‘a’ and ‘b’ that is raised to the power ‘n’,

[latex] \boldsymbol{(a \times b)^n = a^n \times b^n} [/latex]


Example 3.1-c: Expanding Exponential Expressions Using the Power of a Product Rule

Express the following in expanded form using the Power of a Product Rule:

  1. [latex] (8 \times 6)^3 [/latex]


  2. [latex] \displaystyle{\left(\frac{3}{5} \times \frac{2}{7}\right)^3} [/latex]


  3. [latex] (1.12 \times 0.6)^3 [/latex]


Solution

  1. [latex] (8 \times 6)^3 = 8^3 \times 6^3 [/latex]


  2. [latex] \displaystyle{\left(\frac{3}{5} \times \frac{2}{7}\right)^3 = \left(\frac{3}{5}\right)^3 \times \left(\frac{2}{7}\right)^3} [/latex]


  3. [latex] (1.12 \times 0.6)^3 = (1.12)^3 \times (0.6)^3 [/latex]


Power of a Quotient (Power of a Quotient Rule)

The Power of a Quotient Rule is similar to the Power of a Product Rule. To determine the power of a quotient, raise the numerator to the indicated power and divide by the denominator raised to the indicated power.

For example,

[latex] \displaystyle{\left(\frac{5}{8}\right)^3 = \left(\frac{5}{8}\right) \times \left(\frac{5}{8}\right) \times \left(\frac{5}{8}\right)} [/latex]

[latex] \displaystyle{\frac{5 \times 5 \times 5}{8 \times 8 \times 8} = \frac{5^3}{8^3}} [/latex]

You will note from the result that the numerator and the denominator of the expression is raised to the power of 3.

In general, for any quotient with numerator ‘a’ and non-zero denominator ‘b’ that is raised to the power ‘n’,

[latex] \boldsymbol{\displaystyle{\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}}}[/latex], where [latex] \boldsymbol{b \neq 0} [/latex]


Example 3.1-d: Expanding Exponential Expressions Using the Power of a Quotient Rule

Express the following in expanded form using the Power of a Quotient Rule:

  1. [latex] \displaystyle{(\frac{7}{4})^3} [/latex]


  2. [latex] \left[\frac{\left(\displaystyle{\frac{2}{3}}\right)}{\left(\displaystyle{\frac{3}{5}}\right)}\right]^4 [/latex]


  3. [latex] \displaystyle{\left(\frac{1.05}{0.05}\right)^3} [/latex]


Solution

  1. [latex] \displaystyle{(\frac{7}{4})^3 = \frac{7^3}{4^3}} [/latex]


  2. [latex] \left[\frac{\left(\displaystyle{\frac{2}{3}}\right)}{\left(\displaystyle{\frac{3}{5}}\right)}\right]^4 = \displaystyle{\left(\frac{2}{3} \div \frac{3}{5}\right)^4 = \left(\frac{2}{3}\right)^4 \div \left(\frac{3}{5}\right)^4 = \frac{2^4}{3^4} \div \frac{3^4}{5^4}} [/latex]


  3. [latex] \displaystyle{\left(\frac{1.05}{0.05}\right)^3 = \frac{(1.05)^3}{(0.05)^3}} [/latex]


Power of a Power (Power of a Power Rule)

In order to determine the power of a power of a number, multiply the two exponents of the powers together to obtain the new exponent of the power.

For example,

[latex] (9^3)^2 = (9^3) \times (9^3) [/latex]

[latex] = (9 \times 9 \times 9) \times (9 \times 9 \times 9) [/latex]

[latex] = 9 \times 9 \times 9 \times 9 \times 9 \times 9 [/latex]

[latex] = 96[/latex], which is the same as [latex] 9^{(3 \times 2)} [/latex]

You will note that the resulting exponent, 6, can be obtained by multiplying the exponents 3 and 2.

In general, to raise the power of a number ‘a’ to a power ‘m’, and then raise it to a power ‘n’, [latex] \boldsymbol{(a^m)^n = a^{(m \times n)}} [/latex]


Example 3.1-e: Simplifying Exponential Expressions Using the Power of a Power Rule

Express the following as a single power:

  1. [latex] (5^4)^3 [/latex]


  2. [latex] \displaystyle{\left[\left(\frac{3}{8}\right)^3\right]^2} [/latex]


  3. [latex] [(1.04)^4]^2 [/latex]


Solution

  1. [latex] (5^4)^3 = 5^{(4\times 3)} = 5^{12} [/latex]


  2. [latex] \displaystyle{\left[\left(\frac{3}{8}\right)^3\right]^2 = \left(\frac{3}{8}\right)^{(3 \times 2)} = \left(\frac{3}{8}\right)^6} [/latex]


  3. [latex] [(1.04)^4]^2 = (1.04)^{(4 \times 2)} = (1.04)^8 [/latex]



Example 3.1-f: Solving Expressions Using the Power of a Power Rule, Product Rule, and Quotient Rule

Solve the following:

  1. [latex] (2^2)^3 \times 2^7 \div 2^9 [/latex]


  2. [latex] 7^5 \div (7^3)^2 \times 7^2 [/latex]


Solution

  1. [latex] (2^2)^3 \times 2^7 \div 2^9 = 2^6 \times 2^7 \div 2^9 = 2^{(6 + 7 - 9)} = 2^4 = 16 [/latex]


  2. [latex] 7^5 \div (7^3)^2 \times 7^2 = 7^5 \div 7^6 \times 7^2 = 7^{(5 - 6 + 2)} = 7^1 = 7 [/latex]


Table 3.1-a summarizes the properties (rules) of exponents.


Table 3.1-a: Properties (Rules) of Exponents

Property (Rule) Rule in
Exponential Form
Example
Product Rule [latex] a^m \times a^n = a^{(m + n)} [/latex] [latex] 3^5 \times 3^4 = 3^{(5 + 4)} [/latex]
Quotient Rule [latex] \displaystyle{\frac{a^m}{a^n} = a^{(m - n)}} [/latex] [latex] \displaystyle{\frac{3^7}{3^4} = 3^{(7 - 4)}} [/latex]
Power of a Product Rule [latex] (a \times b)^n = a^n \times b^n [/latex] [latex] (3 \times 5)^2 = 3^2 \times 5^2 [/latex]
Power of a Quotient Rule [latex] \displaystyle{\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}} [/latex] [latex] \displaystyle{\left(\frac{3}{5}\right)^3 = \frac{3^3}{5^3}} [/latex]
Power of a Power Rule [latex] (a^m)^n = a^{(m \times n)} [/latex] [latex] (3^2)^3 = 3^{(2 \times 3)} [/latex]

Properties of Exponents and Bases of One and Zero

Table 3.1-b summarizes the properties of powers with exponents and bases of one and zero.


Exponents and Bases of One (1) and Zero (0)

Property (Rule) Description Rule in
Exponential Form
Example
Base ‘a’ Exponent 1 Any base ‘a’ raised to the exponent ‘1’ equals the base itself. [latex] a^1 = a [/latex] [latex] 8^1 = 8 [/latex]
Base ‘a’ Exponent 0 Any non-zero base ‘a’ raised to the exponent ‘0’ equals 1. [latex] a^0 = 1 [/latex] [latex] 8^0 = 1 [/latex]
Base ‘1’ Exponent ‘n’ A base of ‘1’ raised to any exponent ‘n’ equals 1. [latex] 1^n = 1 [/latex] [latex] 1^5 = 1 [/latex]
Base ‘0’ Exponent ‘n’ A base of ‘0’ raised to any positive exponent ‘n’ equals 0. [latex] 0^n = 0 [/latex] [latex] 0^5 = 0 [/latex]
Base ‘0’ Exponent ‘0’ A base of ‘0’ raised to the exponent ‘0’ is indeterminate. [latex] 0^0 = indeterminate [/latex]

Addition and Subtraction of Powers

For the addition and subtraction of powers, there is no special rule for powers with either the same or different bases. Evaluate each operation separately and then perform the addition or subtraction.

For example,


Example 3.1-g: Adding and Subtracting Powers

Evaluate the following:

  1. [latex] 3^3 + 3^2 [/latex]


  2. [latex] 5^2 + 3^2 [/latex]


  3. [latex] 5^4 - 5^2 [/latex]


  4. [latex] 6^2 - 4^2 [/latex]


Solution

  1. [latex] 3^3 + 3^2 = 27 + 9 = 36 [/latex]

    Note: [latex] \boldsymbol{a^m + a^n \neq a^{(m + n)}} [/latex]

    [latex] 3^3 + 3^2 \neq 3^5 [/latex]


  2. [latex] 5^2 + 3^2 = 25 + 9 = 34 [/latex]

    Note: [latex] \boldsymbol{a^m + b^m \neq (a + b)^m} [/latex]

    [latex] 5^2 + 3^2 \neq 8^2 [/latex]


  3. [latex] 5^4 - 5^2 = 625 - 25 = 600 [/latex]

    Note: [latex] \boldsymbol{a^m - a^n \neq a^{(m - n)}} [/latex]

    [latex] 5^4 - 5^2 \neq 5^2 [/latex]


  4. [latex] 6^2 - 4^2 = 36 - 16 = 20 [/latex]

    Note: [latex] \boldsymbol{a^m - b^m \neq (a - b)^m} [/latex]

    [latex] 6^2 - 4^2 \neq 2^2 [/latex]


Multiplication and Division of Powers with Different Bases

There is also no special rule for the product or quotient of powers having different bases. Evaluate each operation separately and then perform the multipication or division.

For example,


Example 3.1-h: Multiplying and Dividing Powers that have Different Bases

Evaluate the following:

  1. [latex] 5^3 \times 4^2 [/latex]


  2. [latex] 5^3 \div 3^2 [/latex]


  3. [latex] 9^2 \times 5^1 [/latex]


  4. [latex] 4^2 \times 5^0 [/latex]


Solution

  1. [latex] 5^3 \times 4^2 = 125 \times 16 = 2,000 [/latex]


  2. [latex] \displaystyle{5^3 \div 3^2 = 125 ÷ 9 = \frac{125}{9} = 13\frac{8}{9}} [/latex]


  3. [latex] 9^2 \times 5^1 = 81 \times 5 = 405 [/latex]


  4. [latex] 4^2 \times 5^0 = 16 \times 1 = 16 [/latex]


Multiplication and Division of Powers with Different Bases

The exponent key on different calculators can be identified by symbols such as exponent_key_1, exponent_key_2, exponent_key_3, etc.

In the following examples ‘exponent_key_1’ will be used to to represent the exponent key.


Example 3.1-i: Evaluating Exponential Expressions using a Calculator

Evaluate the following using a calculator:

  1. [latex] 5^6 [/latex]


  2. [latex] \displaystyle{\left(\frac{3}{2}\right)^3} [/latex]


  3. [latex] (1.02)^4 [/latex]


Solution

  1. [latex] 5^6 [/latex]

    Example 3.1-i Solution a
  2. [latex] \displaystyle{\left(\frac{3}{2}\right)^3} [/latex]

    Example 3.1-i Solution b

  3. [latex] (1.02)^4 [/latex]

    Example 3.1-i Solution c

3.1 Exercises

For Problems 1 and 2, identify the values in the empty columns for Repeated Multiplication, Base, Exponent, and Power (Exponential Notation).

  1. Table Repeated Multiplication Base Exponent Power
    (Exponential Notation)
    a [latex] 7 \times 7 \times 7 \times 7 [/latex] Empty cell Empty cell Empty cell
    b Empty cell Empty cell Empty cell [latex] 9^5 [/latex]
    c Empty cell [latex] 3 [/latex] [latex] 4 [/latex] Empty cell
    d [latex] \displaystyle{\frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{2}{5}} [/latex] Empty cell Empty cell Empty cell
    e Empty cell Empty cell Empty cell [latex] \displaystyle{\left(\frac{5}{7}\right)^5} [/latex]
    f Empty cell [latex] \displaystyle{\left(\frac{4}{7}\right)} [/latex] [latex] 3 [/latex] Empty cell
    g [latex] (1.15) \times (1.15) \times (1.15) \times (1.15) [/latex] Empty cell Empty cell Empty cell
    h Empty cell Empty cell Empty cell [latex] (1.6)^3 [/latex]
    i Empty cell [latex] (1.25) [/latex] [latex] 5 [/latex] Empty cell
  2. Table Repeated Multiplication Base Exponent Power
    (Exponential Notation)
    a [latex] 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 [/latex] Empty cell Empty cell Empty cell
    b Empty cell Empty cell Empty cell [latex] 6^7 [/latex]
    c Empty cell [latex] 5 [/latex] [latex] 3 [/latex] Empty cell
    d [latex] \displaystyle{\frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7} \times \frac{2}{7}} [/latex] Empty cell Empty cell Empty cell
    e Empty cell Empty cell Empty cell [latex] \displaystyle{\left(\frac{3}{8}\right)^4} [/latex]
    f Empty cell [latex] \displaystyle{\left(\frac{2}{9}\right)} [/latex] [latex] 4 [/latex] Empty cell
    g [latex] (2.5) \times (2.5) \times (2.5) \times (2.5) \times (2.5) [/latex] Empty cell Empty cell Empty cell
    h Empty cell Empty cell Empty cell [latex] (1.1)^5 [/latex]
    i Empty cell [latex] (0.75) [/latex] [latex] 4 [/latex] Empty cell

Express Problems 3 to 22 as a single power and then evaluate using a calculator. Round the answer to two decimal places, wherever applicable.

  1. [latex] 4^3 \times 4^6 [/latex]


  2. [latex] 5^5 \times 5^6 [/latex]


  3. [latex] \displaystyle{\left(\frac{1}{2}\right)^4\left(\frac{1}{2}\right)^3} [/latex]


  4. [latex] \displaystyle{\left(\frac{2}{3}\right)^2\left(\frac{2}{3}\right)^3} [/latex]


  5. [latex] \displaystyle{\left(\frac{5}{2}\right)^2\left(\frac{5}{2}\right)^3} [/latex]


  6. [latex] \displaystyle{\left(\frac{5}{3}\right)^3\left(\frac{5}{3}\right)^2} [/latex]


  7. [latex] (3.25)^4(3.25)^2 [/latex]


  8. [latex] (0.75)^3(0.75)^4 [/latex]


  9. [latex] 6^8 \div 6^3 [/latex]


  10. [latex] 3^7 \div 3^5 [/latex]


  11. [latex] \displaystyle{\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^1} [/latex]


  12. [latex] \displaystyle{\left(\frac{3}{2}\right)^4 \div \left(\frac{3}{2}\right)^3} [/latex]


  13. [latex] (1.4)^5 \div (1.4)^2 [/latex]


  14. [latex] (3.25)^6 \div (3.25)^5 [/latex]


  15. [latex] [(6)^2]^3 [/latex]


  16. [latex] [(5)^3]^2 [/latex]


  17. [latex] \displaystyle{\left[\left(\frac{2}{3}\right)^4\right]^3} [/latex]


  18. [latex] \displaystyle{\left[\left(\frac{3}{4}\right)^4\right]^2} [/latex]


  19. [latex] [(2.5)^2]^3 [/latex]


  20. [latex] [(1.03)^3]^2 [/latex]


Express Problems 23 to 34 as a power of the indicated base value.

  1. [latex] 4^5 [/latex] as a power of 2


  2. [latex] 9^6 [/latex] as a power of 3


  3. [latex] 9(27)^2 [/latex] as a power of 3


  4. [latex] 8(16)^2 [/latex] as a power of 2


  5. [latex] \displaystyle{\frac{3^9 \times 3^2}{3^5}} [/latex] as a power of 3


  6. [latex] \displaystyle{\frac{2^9 \times 2^1}{2^5}} [/latex] as a power of 2


  7. [latex] \displaystyle{\frac{(2^5)^4}{4^6}} [/latex] as a power of 2


  8. [latex] \displaystyle{\frac{(2^5)^4}{16^3}} [/latex] as a power of 2


  9. [latex] \displaystyle{\frac{10^6}{10^0}} [/latex] as a power of 10


  10. [latex] \displaystyle{\frac{3^7}{27}} [/latex] as a power of 3


  11. [latex] \displaystyle{\frac{8^5}{8^3}} [/latex] as a power of 2


  12. [latex] \displaystyle{\frac{5^6}{125}} [/latex] as a power of 5


Evaluate Problems 35 to 70.

  1. [latex] 5^2 + 5^3 [/latex]


  2. [latex] 4^3 + 4^2 [/latex]


  3. [latex] 5^4 - 2^4 [/latex]


  4. [latex] 6^3 - 4^3 [/latex]


  5. [latex] 4^4 - 4^2 [/latex]


  6. [latex] 6^3 - 6^1 [/latex]


  7. [latex] 7^2 + 3^2 [/latex]


  8. [latex] 6^2 - 4^2 [/latex]


  9. [latex] 3^5 + 5^3 [/latex]


  10. [latex] 4^3 + 3^4 [/latex]


  11. [latex] 2^5 - 5^2 [/latex]


  12. [latex] 2^6 - 6^2 [/latex]


  13. [latex] 5^4 - 4^2 [/latex]


  14. [latex] 10^3 - 7^2 [/latex]


  15. [latex] 4^0 + 4^4 [/latex]


  16. [latex] 3^0 + 3^4 [/latex]


  17. [latex] (5 \times 4)^3 [/latex]


  18. [latex] (10 \times 2)^4 [/latex]


  19. [latex] (1.25 \times 4)^4 [/latex]


  20. [latex] (5 \times 0.8)^3 [/latex]


  21. [latex] \displaystyle{\left(\frac{2}{3} + 6\right)^5} [/latex]


  22. [latex] \displaystyle{\left(\frac{3}{5} + 1\right)^3} [/latex]


  23. [latex] 3^4 + 3^2 + 3^0 [/latex]


  24. [latex] 4^2 + 4^4 + 4^0 [/latex]


  25. [latex] 2^4 + 3^4 - 1^4 [/latex]


  26. [latex] 3^3 + 2^3 - 1^3 [/latex]


  27. [latex] \displaystyle{\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^0} [/latex]


  28. [latex] \displaystyle{\left(\frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^0 + \left(\frac{1}{5}\right)^4} [/latex]


  29. [latex] (2.1)^2 + (2.1)^0 [/latex]


  30. [latex] (3.2)^2 + (3.2)^1 [/latex]


  31. [latex] 4^3 \times 3^4 [/latex]


  32. [latex] 7^2 \times 2^2 [/latex]


  33. [latex] 6^4 ÷ 5^4 [/latex]


  34. [latex] 8^2 ÷ 7^2 [/latex]


  35. [latex] (2 \times 3^2)^4 [/latex]


  36. [latex] (5 \times 2^2)^3 [/latex]



Vretta logo
www.vretta.com